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Abstract. The Boltzmann transport equation cannot be solved exactly, even after it is 
linearized by assuming that the deviation from equilibrium is small. A number of authors 
have studied model equations, obtained by replacing the (linearized) collision term in the 
Boltzmann equation by various simpler linear operators. These 'model' operators are of 
finite rank and are bounded. The hope is that exact solutions of such model equations can 
be used to deduce qualitative features of the exact solutions of the Boltzmann equation. 

We propose an alternative model, no less realistic in most respects than the usual ones, 
which leads to physical conclusions which are the exact opposites of the results in the litera- 
ture. In particular, with our model all normal modes have normalizable eigenfunctions, 
and the eigenvalues are analytic functions of the wavenumber k for all k .  No SO called 
'Knudsen modes' exist in our model. 

Qualitative arguments are given to suggest that the difference results from the fact that 
our model operator, like the true Boltzmann collision operator, is unbounded, whereas the 
conventional model operators are bounded. 

1. Introduction 

Consider a box of volume V ,  containing N gas atoms, each of mass m. If the gas is in 
equilibrium at temperature T ,  then the distribution function f(r, c, t )  is independent of 
position r and time t and has the form : 

fo(r, c, t )  = ( N / V ) n - 3 ' 2  exp( -c2) (1.1) 

where c is related to the velocity U by ( k  is Boltzmann's constant) 

c = (m/2kT)1'2u.  

For non-equilibrium states,f(r, c, t )  depends on rand t ,  as well as on c ; the Boltzmann 
equation is linearized by writing 

(1.3) 
and assuming that f i ,  the deviation from the equilibrium distribution, is small enough 
so that terms quadratic infl can be ignored. The resulting equation has the form : 

djl fo"t  + c . (dfl/o"r) = Lfl (1.4) 
where L is a linear operator which acts only on the velocity variable infl. The operator L 
has a five-fold degenerate eigenvalue zero, and is otherwise negative definite. A full 
discussion ofthe spectrum of L is possible for so called 'Maxwell molecules', ie, molecules 
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repelling each other with an inverse fifth-power force law. For such molecules the 
eigenvalue equation 

J k ( c )  = P,UU(C)  (1.5) 

can be solved exactly. The eigenfunctions are the so called Burnett functions (known 
in quantum mechanics as eigenfunctions of the three-dimensional isotropic linear 
harmonic oscillator); the first five eigenvalues pu, a = 1 ,2 ,3 ,4 ,5 ,  are zero; all other 
eigenvalues are real and negative, and go to - 00 for large values of n + I in the composite 
index a = (n, I ,  m) of the Burnett function unlm(c). 

Since (1.4) is invariant under translations in r and t ,  it can be discussed by means 
of the ansatz : 

fl(r, c, t )  = exp(ik . r + At)4(c) (1.6) 

which leads to the k-dependent eigenvalue problem 

( L  - ik . c)(b(c) = @(c). (1.7) 

In the limit of small wavevectors k this reduces to (1.5). One therefore expects that the 
eigenvalues A&) have the property : 

lim A&) = p= 
k - 0  

If this is true, exactly five eigenvalues approach zero in that limit ; these are the ‘macro- 
scopic modes’, interpreted as heat conduction (one mode), sound wave propagation 
(two modes), and dissipation of shear motion (two modes). For a detailed discussion, 
see Wang Chang and Uhlenbeck (1952) and Foch and Ford (1970). All other modes 
are ‘microscopic’, decaying with lifetimes comparable to (- pz)- ; these lifetimes are 
of the order of the mean free time of a gas atom between successive collisions with 
other gas atoms. A mode with real negative Au is a purely dissipative mode; oscillatory 
modes are associated with two eigenvalues & which are complex conjugates of each 
other ; the (negative) real part gives the rate of dissipation, the imaginary part gives the 
circular frequency o,(k).  

Unfortunately, an exact discussion of the eigenvalue problem (1.7) is impossible, 
even for Maxwell molecules; for more realistic molecular models, even (1.5) cannot be 
solved exactly, to say nothing of (1.7). 

Wang Chang and Uhlenbeck (1952) pioneered an approximation method which 
goes as follows : (b(c) in (1.7) is expanded in a series of Burnett functions, and this series 
is truncated after a finite number K of terms. The matrix elements of L with respect to 
Burnett functions can be determined quite generally (Aisbett et al 1974), and were 
known in particular cases a long time ago ; the matrix elements of the operator c are 
easy to find. The truncated problem then reduces to the algebraic problem of deter- 
mining the eigenvalues and eigenvectors of a known K x K matrix. This can be done 
analytically for small values of k, and generally for all k by numerical methods, It is 
assumed that all but perhaps the final few of the K eigenvalues so found are close to 
the corresponding eigenvalues of the exact problem. The method works well, apparently, 
for small k, but runs into practical difficulties for large k (meaning Jkl 2 A-’,  where A 
is the mean free path of a gas atom). 

However, such a truncation method is inherently incapable of finding a continuous 
part of the eigenvalue spectrum in (1.7), even if a continuous spectrum exists. A con- 
tinuous spectrum is associated with eigenfunctions which are not properly normalizable 
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functions but rather are distributions, ie, they contain delta-function parts. No truncated 
expansion can represent such a distribution, and thus a continuous spectrum is excluded 
from the start by the approximation method. 

It is of interest, therefore, to study exact solutions of model equations similar to 
(1.7), obtained from (1.7) by replacing the Boltzmann collision operator L by some 
simpler ‘model’ operator Lo, say, chosen so that (1.7) is exactly soluble, and yet, hopefully, 
so that Lo is in some qualitative sense still similar to L. The first such model was 
proposed by Bhatnagar et a1 (1954); for recent references, we refer to McCormack 
(1 973). 

The results from these studies are startling: according to Foch and Ford (1970), 
only the five ‘macroscopic’ modes are genuine. All other modes found by the truncation 
method are spurious! Even the five macroscopic modes exist only for sufficiently 
small wavenumbers k ; beyond some limiting k value, the macroscopic modes disappear 
altogether, and all modes are ‘Knudsen modes’, ie, they contain delta-function parts 
within q5(c). Furthermore, there is no functional relationship between 1 and k for 
Knudsen modes : there is a continuous range of 3, values for any one value of k. 

In 0 2 we indicate, by means of a model even simpler than that of Foch and Ford, 
just how these Knudsen modes arise. In 43  we present an alternative model, no less 
realistic than that of 4 2, which leads to exactly opposite physical conclusions. These 
results are discussed in 4 4. 

2. A simplified model with a bounded operator 

For our purposes, we can restrict ourselves to one-dimensional models. The vectors r 
and c are replaced by scalars x and c, respectively, so that (1.4) becomes: 

(2.1) 
The Burnett functions are replaced by parabolic cylinder functions (Whittaker and 
Watson 1950, see paragraphs 16.5 to 16.7), which are Hermite polynomials multiplied 
by exp( - c2) : 

dfl/dt + c(dfi /dx) = LS,. 

These functions are normalized by : 
m 1- rx) un(c)um(c) dc = a n m  

and the leading member of the set is 

uo(c) = ( 2 / ~ ) ” ~  exp( - 2 ) .  (2.4) 
Our super-simplified model operator Lo is constructed so as to be equivalent to 

multiplication by a negative real constant - q for all functions except the function uo ; 
when Lo operates on uo, it gives zero: 

for n = 0 i“ for n 2 1. (2.5) Loun(c) = 
- qun(c) 
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The explicit form of the operator Lo is 

The one-dimensional analogue of (1.7) is 

( L  - ikc)4(c) = @(c). (2.7) 
When Lo, (2.6), is substituted for L in (2.7), the result can be written in the form 

m 

ik(c - w ) ~ ( c )  = quo@) uo(c’)&’) dc‘ 
- w  

(2.8a) 

w = i ( I + q ) / k .  (2.8b) 

We note that the right-hand side of (2.8a) is a constant multiple of the known function 
uo(c). We also note that w is a constant, from which the eigenvalue I can be deduced 
by (2.8b). 

This is enough to show just how the ‘Knudsen modes’ arise in such a model. The 
discussion of (2.8) depends completely on whether w, (2.8b), is a real number, or has a 
nonzero imaginary part. If the imaginary part of w is nonzero, the factor c - w on the 
left-hand side of ( 2 . 8 ~ )  can never vanish for any real value of the variable c. We can 
therefore divide by c - w to get the explicit form 

4 ( c )  = Auo(c)/(c-w) w complex (2.9) 
where A is an arbitrary constant. Substitution of (2.9) into ( 2 . 8 ~ )  leads to  a consistency 
condition, which in turn restricts w, and hence I ,  to specific eigenvalues. The function 
(2.9) is a proper, normalizable function. 

On the other hand, i f  w is  purely real, division by c - w causes trouble when c = w. 
The form of the solution is now : 

(2.10) 

where A and B are constants, 6(c- w) is the Dirac delta-function, and the symbol ‘P’ 
indicates that the principal value must be taken in any integration over c which includes 
the point c = w within the interval of integration. Further discussion shows that the 
constants A and B are inter-related, so only one of them is free. However, another 
completely free parameter is now present, namely the (real) value of w. It turns out 
that (2.10) gives a solution of (2.8), in terms of distributions rather than functions but 
still consistent, no matter what value of w we choose. 

This covers the essential points. The details are so completely similar to the ones 
discussed by Foch and Ford (1970) that we refer to their work, with an extremely 
similar model, and merely state the conclusions. These are : 

(i) All but a finite number of modes are distributions rather than normalizable 
functions. For these so called ‘Knudsen modes’, there exists no functional relation 
between A and k ;  rather : 

&c) = AP[uO(C)/(C - w)]  + B ~ ( c  - W )  w real 

A =  - q - i k w  (2.1 1 )  

so that the imaginary part of is completely arbitrary, for all k except k = 0. 
(ii) There is a limiting value k,,,, such that for k > k,,, all modes are Knudsen 

modes. In our model, we find k,,, = (27r)”’q; Foch and Ford find k,,, = 1.95q for 
their model. 
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(iii) For sufficiently small values of k there do exist a finite number of modes with 
normalizable 4(c) and such that A is a function of k. The number of these ordinary 
modes equals the degeneracy of the eigenvalue ,U = 0 of the operator L in (2.1). 

(iv) In our model, there is exactly one ordinary mode, with real negative A(k). It 
corresponds to the decay of density fluctuations by self-diffusion, rather than to sound 
waves. Foch and Ford get two ordinary modes with their model, corresponding 
physically to sound waves. 

Foch and Ford (1970) suggest that conclusions (iHiii) also apply to the Boltzmann 
equation, so that all but the five macroscopic modes are of the Knudsen type, and even the 
five macroscopic modes disappear at sufficiently high wavenumbers. 

3. A simplified model with an unbounded operator 

We define an alternative model operator, L ,  , to have the same eigenfunctions u,,(c) as 
before, but different eigenvalues : 

Just like Lo,  (2.5), the operator L ,  has exactly one zero eigenvalue, with eigenfunction 
uo(c), and all other eigenvalues are negative. Unlike Lo, the operator L,  is not bounded, 
ie, the eigenvalues can become infinitely large in absolute value. It is interesting to 
observe that the same is true of the Boltzmann collision operator for Maxwell molecules 
(see Wang Chang and Uhlenbeck 1952). 

A linear operator is defined uniquely by its eigenfunctions and eigenvalues, so L ,  
is defined by (3.1) and (3.2). Fortunately, L,  allows an extremely simple representation 
as a differential operator, namely: 

dZ 
L ,  = 7 - 4 c 2 + 2 .  dc (3.3) 

The proof that (3.3) leads to (3.1) and (3.2) is simply a restatement of the standard theory 
of the linear harmonic oscillator in quantum mechanics. Compared to the linear 
harmonic oscillator Hamiltonian of quantum mechanics, L ,  differs only trivially : the 
sign has been changed, to make L ,  negative rather than positive, and the + 2  has been 
added to force the leading eigenvalue to zero. 

Substitution of L ,  into (2.7) leads to the differential equation : 

&’(c) = ( 4 2  + ikc + A - 2)4(c). (3.4) 

z = c+(ik/8) (3.5) 

d24/dzZ = (42’ +&k2  + A  - 2)4(z). (3.6) 
This is directly related to Weber’s equation (see Whittaker and Watson 1950, chap 16). 
If we define s by 

(3.7) 

This can be simplified by a shift of origin in the complex c plane. Define: 

to get 

s =  -1 4(A+&kZ) 
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then the solutions of (3.6) can be expressed in terms of the parabolic cylinder functions 
D,(22) and D,( - 22). Returning to the original variables, we get : 

(3 .8 )  4(c) = AD,(2c +$k) + BD,( - 2c -$k) 

as the general solution of (3.4), with two arbitrary constants A and B. 
For arbitrary complex s, Whittaker and Watson give the detailed asymptotic 

behaviour of D,(z) for large IzI. It is trivially easy to check that the function (3 .8 )  becomes 
infinite like exp( + c2) either for large positive c, or for large negative c, or for both, 
for all complex values of s except the eigenvalues : 

s = n = 0 , 1 , 2 , 3  , . . .  (3.9) 

for which the eigenfunctions are (except for normalization) 

&(c) = D,(2c+$ik). (3.10) 

Substitution of (3.9) into (3.7) yields 

&(k) = -4n-(k2/16).  (3 .1  1 )  

This finishes the mathematics. The physical conclusions are : 
(i) All normal modes have ordinary, normalizable eigenfunctions. There are no 

(ii) There is no upper limit on k. 
(iii) The number of ordinary modes is infinite, and their eigenfunctions span the 

Knudsen modes. 

domain of the operator L - ikc in Hilbert space. 

4. Discussion 

Conclusions (iHiii) at the end of $ 3  are the precise opposites of conclusions (iHiii) 
at the end of 2. The model operator L ,  of $ 3 is no less realistic than the model operator 
Lo of $ 2, yet the two models lead to opposite results. 

First, then, the conclusions of Foch and Ford (1970) concerning the normal mode 
solutions of the linearized Boltzmann equation are highly suspect. A model, no worse 
than theirs in its essentials, leads to precisely opposite results. 

Second, the whole technique of working with mutilated model operators, rather 
than with the true Boltzmann equation, needs re-appraisal. Exact solutions of simple 
models constitute an exhilarating game for those who find this game exhilarating ; 
but before the conclusions from such models can be used physically, it is necessary to 
give a physical discussion of the extent to which the model approximates the true 
physical situation. The two examples given here show that this physical discussion 
may have to be fairly intricate: In many relpects Lo and L ,  are physically similar; 
both have one zero eigenvalue, with the same eigenfunction, both are negative definite 
otherwise. Differences between theiAi, likely to be relevant, are : 

(a) Lo is bounded whereas L,  is unbounded ; 
(b) Lo has an accumulation point in its spectrum, whereas L ,  has no accumulation 

point7 ; 

t The author would like to thank the referee for pointing out the importance of accumulation points in the 
spectrum of the model operator L, and for the construction of formal arguments to this effect. 
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(c) L ,  is not only unbounded, but is ‘more strongly unbounded’ than the perturba- 
tion -ikc; that is, for large values of c the term -4c2 in L ,  is larger than -ikc, no 
matter how big k is. 

By making use of the formal expansion of an Hermitian operator in terms of its 
eigenvalues and eigenfunctions, and manipulating that expansion suitably, formal 
arguments can be constructed to suggest that at least some of these points (a), (b), and 
(c) are relevant to the final results (see footnote to previous page). 

If these particular points are indeed relevant, then it follows that L ,  is a more realistic 
model operator than Lo, or than any other bounded model operator. For Maxwell 
molecules, at least, the eigenfunctions and eigenvalues of the true L are known. The 
eigenfunctions are Burnett (three-dimensional linear harmonic oscillator) functions. 
The eigenvalues p,,) are discrete, real, non-positive, and have no accumulation point. 
p,,) tends to - CG as n + I tends to infinity. It is interesting to observe, furthermore, 
that for the special case 1 = 0 the asymptotic behaviour of the eigenvalues is pn0 - - An 
( A  = constant), as shown in appendix C of Wang Changand Uhlenbeck. This asymptotic 
behaviour is highly reminiscent of our simple model operator L ,  . For all these reasons, 
we suggest that not only is L ,  just as good a model as Lo, but actually L ,  is a much 
better model. 

We emphasize that all this is in the nature of surmise and conjecture. The truth can 
be found only from a careful study of the actual equations to be solved, not from guesses 
based on exact solutions of exceedingly simplified model equations. 

In particular, it is an interesting question in pure mathematics to decide what are 
the conditions on a negative, unbounded operator L, with a discrete spectrum, to make 
L dominate over another unbounded operator X with a purely continuous spectrum; 
‘domination’ here means that L-ikX should have a purely discrete spectrum, for all 
real values of the parameter k. 
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